

# FROM WASTE TO SYNTHETIC FUELS

2023



## IS THERE ANY SOLUTION?







### **IS WASTE YOUR PROBLEM?**



THIS MIGHT BE THE SOLUTION



## problem and solution at a glance

**THE PROBLEM** is the ever-increasing burden on the environment. Especially in poorer countries, there is an urgency to deal with the ever-increasing waste problem. Efforts to date to develop technology capable of efficiently and economically solving the increasing problems with waste in the oceans and on land have failed because of the high costs involved.

- **EFFICIENT APPROACH** would be to treat the various waste fractions by recycling and, in particular, recovering the hydrocarbons from the waste products.
- **CHALLENGE** is to find a solution that solves the problem but is profitable at the same time.
- **OUR SOLUTION** is sustainable and profitable, a win-win situation for the environment and industry. A technology that converts household and industrial waste as well as biomass into synthetic diesel or synthetic kerosene. Our solution is so efficient that one ton of feedstock produces up to 500 liters of diesel or kerosene.



## The technology in broad outline

**THE TECHNOLOGY** is a third-generation BTL (biomass-to-liquid) process, i.e., an imitation of nature. Feedstock is mixed with carrier oil and catalyst at around 200°C in the pre-process. In the following main process, a chemical-physical reaction at approx.280°C-340°C shortens the molecular chains to produce diesel or kerosene.

In a short post-process with desulfurization, the products are adapted to the current EN590/ ASTM7655 standards.

**THE ECONOMICITY** of the solution is highly attractive based on our experience. The selling price is more than competitive despite the current market prices. The energy efficiency is between 50-80%, depending on the composition of the input material.

**THE PRODUCT** is a pure "Synthetic Diesel" or a pure "Synthetic Kerosene", which has an unlimited shelf life without additives. Mixing with fossil diesel is possible, but not necessary.

**ADDITIONAL BENEFITS:** Neutral carbon footprint, recycling of all valuable materials, residual 5% "Class2", non-toxic.



## The Technology in Details



HSCD (High Speed Catalytic Depolymerization) a chemo-technical imitation of nature's process to convert all organic matter into crude oil

The main difference is the acceleration of natures process from millions of years to only 30 Minutes.

➢ By using 100% crystalline catalysts instead of minerals contained in soil
➢ By raising the temperature to 280°C instead of nature's 14°C −17°C
➢ By creating an optimized and controlled environment in the HSCD plant

The Final Product is a Synthetic Diesel of High Quality Meeting the Current Norms EN 590 & ASTM 7566.



### **Imitation of the nature**



The CO2 absorbed by the biomass during growth is released to a small extent during the process. This ensures a neutral balance.

#### No emissions

Neutral CO2 balance

The closed cycle does not emit any emissions.

### No hazardous by-products

Due to the relatively low temperatures of max. 340°C, neither dioxins nor furans are formed.

#### No high process pressures

The process operates at a vacuum of around -0.04 bar and ensures safe plant operation.

#### High energy recovery

Up to 80% of the energy contained can be recovered.

One ton of dried wood or biomass yields approx. 300 liters of diesel One ton of dried household waste yields approx. 500 liters of diesel

### unique selling proposition









### **Residual material volume comparison**





1:Ash 2:Ash 3:Blast furnace slag / fly ash **4:compost/impurities** 5:mixed waste



### **Plant Concept**



Proces-Residue = Minerals & Inert



### **Financial Projection**

#### **KEY DATA AT-HSCD 5000**

| KEY DATA for AT-HSCD 5000           | CONSTRUCTION & PARTIAL PR | ODUCTION @ 2'500 HOURS |            | RS         |             |             |             |
|-------------------------------------|---------------------------|------------------------|------------|------------|-------------|-------------|-------------|
| EURO [€]                            | YEAR 1                    | YEAR 2                 | YEAR 3     | YEAR 4     | YEAR 5      | YEAR 6      | YEAR 7      |
| Total Revenues                      | -                         | 15.000.000             | 48.000.000 | 48.000.000 | 48.000.000  | 48.000.000  | 48.000.000  |
| Production Cost; 010 €/Liter        |                           | 1.250.000              | 4.000.000  | 4.000.000  | 4.000.000   | 4.000.000   | 4.000.000   |
| EBITDA                              | -                         | 11.875.000             | 38.000.000 | 38.000.000 | 38.000.000  | 38.000.000  | 38.000.000  |
| EBIT                                |                           |                        |            |            |             |             |             |
| Return on Investment ROI (%)        | -                         | 8,25%                  | 26,39%     | 26,39%     | 26,39%      | 26,39%      | 26,39%      |
| Cash Flow                           | -112.000.000              | -13.125.000            | 31.000.000 | 38.000.000 | 38.000.000  | 38.000.000  | 38.000.000  |
| Liquidity                           | 32.000.000                | 18.875.000             | 49.875.000 | 87.875.000 | 125.875.000 | 163.875.000 | 201.875.000 |
|                                     |                           |                        |            |            |             |             |             |
| Capital                             | 144.000.000               |                        |            | 0          | 0           | 0           | 0           |
| Investment                          | 112.000.000               | 25.000.000             | 7.000.000  | -          | -           | -           | -           |
| Amortization                        |                           |                        |            |            |             |             |             |
| Finance cost                        |                           |                        |            |            |             |             |             |
|                                     |                           |                        |            |            |             |             |             |
| facility cost; 015 €/Liter          | -                         | 1.875.000              | 6.000.000  | 6.000.000  | 6.000.000   | 6.000.000   | 6.000.000   |
| Kerosene Production per Year/Liters | -                         | 12.500.000             | 40.000.000 | 40.000.000 | 40.000.000  | 40.000.000  | 40.000.000  |
| Sales Price of Kerosene/Liter       | -                         | 1,20                   | 1,20       | 1,20       | 1,20        | 1,20        | 1,20        |
| Revenues Kerosene                   | -                         | 15.000.000             | 48.000.000 | 48.000.000 | 48.000.000  | 48.000.000  | 48.000.000  |
| Marge/Liter                         |                           | 0,95                   | 0,95       | 0,95       | 0,95        | 0,95        | 0,95        |

- AT-HSCD 5000 with minimum 5000 liters/hour @ 8'000 hours/year
- Projected output is 40 Mio. Liters/year
- The Plant includes post treatment (Filtration, Desulfurization, Hydrogenation)
- The sales price of the synthetic kerosene is set at 1.20 EUR/liter
- Manufacturing of the plant will start in Year 1
- Plant will partially start the production in Year 2 with 2.500 hours per year
- At the end of Year 2 the Plant will be fully installed and implemented at the site
- Plant will fully operate from the Year 3 with 8.000 hours per year
- Year 3 is thus the first Year of the full production "Start of Operation of the Plant"



### **Financial Projection**

#### **CASH FLOW AT-HSCD 5000**

| CASH FLOW for AT-HSCD 5000 | YEAR 1       | YEAR 2       | YEAR 3      | YEAR 4      | YEAR 5      | YEAR 6     | YEAR 7     | YEAR 8     |
|----------------------------|--------------|--------------|-------------|-------------|-------------|------------|------------|------------|
| EURO [€]                   |              |              |             |             |             |            |            |            |
| Debt Capital               |              |              |             |             |             |            |            |            |
| Capital                    | 0            | 0            | 0           | 0           | 0           | 0          | 0          | 0          |
| Revenues from Sales        | 0            | 15.000.000   | 48.000.000  | 48.000.000  | 48.000.000  | 48.000.000 | 48.000.000 | 48.000.000 |
| Revenues                   | 0            | 15.000.000   | 48.000.000  | 48.000.000  | 48.000.000  | 48.000.000 | 48.000.000 | 48.000.000 |
| Total Receipt of Payments  | 0            | 15.000.000   | 48.000.000  | 48.000.000  | 48.000.000  | 48.000.000 | 48.000.000 | 48.000.000 |
|                            |              |              |             |             |             |            |            |            |
| Investment                 | 112.000.000  | 25.000.000   | 7.000.000   | 0           | 0           | 0          |            | 0          |
| Production Cost            | 0            | 1.250.000    | 4.000.000   | 4.000.000   | 4.000.000   | 4.000.000  | 4.000.000  | 4.000.000  |
| Facility Cost              | 0            | 1.875.000    | 6.000.000   | 6.000.000   | 6.000.000   | 6.000.000  | 6.000.000  | 6.000.000  |
| Operating Expenses         | 0            | 3.125.000    | 10.000.000  | 10.000.000  | 10.000.000  | 10.000.000 | 10.000.000 | 10.000.000 |
| Interest Debt Capital      | 0            | 0            | 0           | 0           | 0           | 0          | 0          | 0          |
| Finance Expenses           | 0            | 0            | 0           | 0           | 0           | 0          | 0          | 0          |
| Cash Flow                  | -112.000.000 | -13.125.000  | 31.000.000  | 38.000.000  | 38.000.000  | 38.000.000 | 38.000.000 | 38.000.000 |
| Taxes                      | 0            | 0            | 0           | 0           | 0           | 0          | 0          | 0          |
| Net Cash Flow              | -112.000.000 | -13.125.000  | 31.000.000  | 38.000.000  | 38.000.000  | 38.000.000 | 38.000.000 | 38.000.000 |
| Liquidity                  | -112.000.000 | -125.125.000 | -94.125.000 | -56.125.000 | -18.125.000 | 19.875.000 | 57.875.000 | 95.875.000 |

### **Financial Projection**



### **Recommendation for Personnel Requirements AT-HSCD 5000**

|                 | HSCD           |        |          |          |          |           |          |           |  |
|-----------------|----------------|--------|----------|----------|----------|-----------|----------|-----------|--|
|                 |                |        |          |          |          |           |          |           |  |
|                 | position       | shifts | MA/shift | MA total | Hr/Shift | Days/Week | Hrs/Week | Hrs/Month |  |
| HSCD            | Chief Unit     | 4      | 1        | 4        | 6,0      | 7         | 168,0    | 672,0     |  |
| HSCD            | Machinist      | 4      | 1        | 4        | 6,0      | 7         | 168,0    | 672,0     |  |
| HSCD            | Assistant      | 4      | 2        | 8        | 6,0      | 7         | 336,0    | 1.344,0   |  |
| HSCD            | Helper         | 4      | 2        | 8        | 6,0      | 7         | 336,0    | 1.344,0   |  |
| Desulfurization | Foreman        | 4      | 1        | 4        | 6,0      | 7         | 168,0    | 672,0     |  |
| Laboratory      | Lab Technician | 1      | 1        | 1        | 8,0      | 7         | 56,0     | 224,0     |  |
|                 |                |        | 8        | 29       |          |           |          | 4.928     |  |

|           | SURVEILLANCE & SAFETY |        |          |          |          |           |          |           |  |
|-----------|-----------------------|--------|----------|----------|----------|-----------|----------|-----------|--|
|           |                       |        |          |          |          |           |          |           |  |
|           | position              | shifts | MA/shift | MA total | Hr/Shift | Days/Week | Hrs/Week | Hrs/Month |  |
| Foreman   | Foreman               | 4      | 2        | 8        | 6,0      | 7         | 336,0    | 1.344,0   |  |
| Assistant | Assistant             | 4      | 2        | 8        | 6,0      | 7         | 336,0    | 1.344,0   |  |
|           |                       |        | 4        | 16       |          |           |          | 2.688     |  |

| Workshop/Garage/Maintenance |           |        |          |          |          |           |          |           |
|-----------------------------|-----------|--------|----------|----------|----------|-----------|----------|-----------|
|                             |           |        |          |          |          |           |          |           |
|                             | position  | shifts | MA/shift | MA total | Hr/Shift | Days/Week | Hrs/Week | Hrs/Month |
| Workshop                    | Machinist | 2      | 2        | 4        | 8,0      | 6         | 192,0    | 768,0     |
| Garage                      | Machinist | 2      | 2        | 4        | 8,0      | 6         | 192,0    | 768,0     |
| Logistics                   | Driver    | 1      | 1        | 1        | 8,0      | 6         | 48,0     | 192,0     |
|                             |           |        | 5        | 9        |          |           |          | 1.728     |

| ADMINISTRATION LOCAL |            |        |          |          |          |           |          |           |
|----------------------|------------|--------|----------|----------|----------|-----------|----------|-----------|
|                      |            |        |          |          |          |           |          |           |
|                      | position   | shifts | MA/shift | MA total | Hr/Shift | Days/Week | Hrs/Week | Hrs/Month |
| CEO                  | CEO        | 1      | 1        | 1        | 8,0      | 5         | 40,0     | 160,0     |
| Secretary            | Secretary  | 1      | 1        | 1        | 8,0      | 5         | 40,0     | 160,0     |
| Accountant           | Accountant | 1      | 1        | 1        | 8,0      | 5         | 40,0     | 160,0     |
|                      |            |        | 3        | 3        |          |           |          | 480       |

|                  | WASTE PREPARATION |        |          |          |          |           |          |           |  |
|------------------|-------------------|--------|----------|----------|----------|-----------|----------|-----------|--|
|                  |                   |        |          |          |          |           |          |           |  |
|                  | position          | shifts | MA/shift | MA total | Hr/Shift | Days/Week | Hrs/Week | Hrs/Month |  |
| Receiving/Weighi | Foreman           | 2      | 1        | 2        | 6,0      | 7         | 84,0     | 336,0     |  |
| Receiving/Weighi | Assistant         | 2      | 2        | 4        | 6,0      | 7         | 168,0    | 672,0     |  |
| Receiving/Weighi | Helper            | 2      | 3        | 6        | 6,0      | 7         | 252,0    | 1.008,0   |  |
| Separation       | Chief Unit        | 2      | 1        | 2        | 6,0      | 7         | 84,0     | 336,0     |  |
| Separation       | Machinist         | 2      | 1        | 2        | 6,0      | 7         | 84,0     | 336,0     |  |
| Separation       | Foreman           | 2      | 1        | 2        | 6,0      | 7         | 84,0     | 336,0     |  |
| Separation       | Assistant         | 2      | 1        | 2        | 6,0      | 7         | 84,0     | 336,0     |  |
| Separation       | Helper            | 2      | 150      | 300      | 6,0      | 7         | 12.600,0 | 50.400,0  |  |
| Drying           | Chief Unit        | 2      | 1        | 2        | 6,0      | 7         | 84,0     | 336,0     |  |
| Drying           | Machinist         | 2      | 1        | 2        | 6,0      | 7         | 84,0     | 336,0     |  |
| Drying           | Foreman           | 2      | 1        | 2        | 6,0      | 7         | 84,0     | 336,0     |  |
| Drying           | Assistant         | 2      | 1        | 2        | 6,0      | 7         | 84,0     | 336,0     |  |
| Silo             | Foreman           | 2      | 1        | 2        | 6,0      | 7         | 84,0     | 336,0     |  |
| Silo             | Helper            | 2      | 2        | 4        | 6,0      | 7         | 168,0    | 672,0     |  |
| Shredding        | Chief Unit        | 2      | 1        | 2        | 6,0      | 7         | 84,0     | 336,0     |  |
| Shredding        | Machinist         | 2      | 1        | 2        | 6,0      | 7         | 84,0     | 336,0     |  |
| Shredding        | Foreman           | 2      | 1        | 2        | 6,0      | 7         | 84,0     | 336,0     |  |
| Shredding        | Helper            | 2      | 2        | 4        | 6,0      | 7         | 168,0    | 672,0     |  |
|                  |                   |        | 172      | 344      |          |           |          | 57.792    |  |

| TOTALS | 401      |  |
|--------|----------|--|
|        | MA total |  |

